Clustering and Classification of Data Using Polynomial Graphs – We present a scalable and principled heuristic algorithm for the clustering problem of predicting the clusters of data, in the form of an optimization problem where the objective of optimization is to cluster data by finding a set of candidate clusters, given an unlabeled dataset. A novel optimization problem with no prior information on the data, is presented in our novel algorithm. We derive a new, efficient algorithm based on the idea of the emph{noisy} graph-search, which can be used to solve the heuristic optimization problem. Experiments are presented on the dataset of 20K data sets from our lab. The proposed algorithm is evaluated on several datasets, including two large-scale databases, the MNIST dataset and the COCO dataset of MNIST and COCO. It achieves a mean success rate of 90.8% on average for the MNIST dataset and is comparable to state-of-the-art clustering results, including using LCCA and SVM-SVM algorithms.
In this paper, on the basis of the similarity between our results from the field of video signal processing, we propose an effective method for the detection of different forms of occlusion in videos based on the use of 3D facial pose estimation. Our approach is based on the use of the 3D facial pose estimation algorithm to generate a fully 2D representation of the scene. This representation is used for 3D facial pose estimation. Using the facial pose estimation algorithm we identify occlusions in videos consisting of multiple occlusions. We use a large number of images and a large number of frames and demonstrate the effectiveness of our method with a variety of applications including 3D face recognition, 3D motion segmentation, and 3D motion labeling.
A Comparative Study of Different Image Enhancement Techniques for Sarcasm Detection
Improving Speech Recognition with Neural Networks
Clustering and Classification of Data Using Polynomial Graphs
On the Generalizability of Kernelized Linear Regression and its Use as a Modeling Criterion
Recurrent Neural Networks for Activity Recognition in Video SequencesIn this paper, on the basis of the similarity between our results from the field of video signal processing, we propose an effective method for the detection of different forms of occlusion in videos based on the use of 3D facial pose estimation. Our approach is based on the use of the 3D facial pose estimation algorithm to generate a fully 2D representation of the scene. This representation is used for 3D facial pose estimation. Using the facial pose estimation algorithm we identify occlusions in videos consisting of multiple occlusions. We use a large number of images and a large number of frames and demonstrate the effectiveness of our method with a variety of applications including 3D face recognition, 3D motion segmentation, and 3D motion labeling.
Leave a Reply